Inspection on Arrival
1. Inspect unit upon arrival. In case of damage, report it immediately to transportation company and your local factory sales representative.
2. Check rating plate on unit to verify that power supply meets available electric power at the point of installation.
3. Inspect unit upon arrival for conformance with description of product ordered (including specifications where applicable).

FOR YOUR SAFETY
1. Improper installation, adjustment, alteration, service or maintenance can cause property damage, injury or death, and could cause exposure to substances which have been determined by various state agencies to cause cancer, birth defects or other reproductive harm. Read the installation, operating and maintenance instructions thoroughly before installing or servicing this equipment.
2. Installing, starting up and servicing heating, ventilation and air conditioning equipment poses significant hazards and requires specialized knowledge of Modine products and training in performing those services. Failure to have any service properly performed by, or making any modification to Modine equipment without the use of, qualified service personnel could result in serious injury to person and property, including death. Therefore, only qualified service personnel should work on any Modine products.

FOR YOUR SAFETY
The use and storage of gasoline or other flammable vapors and liquids in open containers in the vicinity of this appliance is hazardous.

IF YOU SMELL GAS:
1. Open windows.
2. Don’t touch electrical switches.
3. Extinguish any open flame.
4. Immediately call your gas supplier.

CAUTION
To prevent premature heat exchanger failure do not locate ANY gas-fired units in areas where chlorinated, halogenated, or acid vapors are present in the atmosphere.
SPECIAL PRECAUTIONS

THE INSTALLATION AND MAINTENANCE INSTRUCTIONS IN THIS MANUAL MUST BE FOLLOWED TO PROVIDE SAFE, EFFICIENT AND TROUBLE-FREE OPERATION. IN ADDITION, PARTICULAR CARE MUST BE EXERCISED REGARDING THE SPECIAL PRECAUTIONS LISTED BELOW. FAILURE TO PROPERLY ADDRESS THESE CRITICAL AREAS COULD RESULT IN PROPERTY DAMAGE OR LOSS, PERSONAL INJURY, OR DEATH. THESE INSTRUCTIONS ARE SUBJECT TO ANY MORE RESTRICTIVE LOCAL OR NATIONAL CODES.

HAZARD INTENSITY LEVELS

1. **DANGER:** Indicates an imminently hazardous situation which, if not avoided, WILL result in death or serious injury.

2. **WARNING:** Indicates a potentially hazardous situation which, if not avoided, COULD result in death or serious injury.

3. **CAUTION:** Indicates a potentially hazardous situation which, if not avoided, MAY result in minor or moderate injury.

4. **IMPORTANT:** Indicates a situation which, if not avoided, MAY result in a potential safety concern.

DANGER

Appliances must not be installed where they may be exposed to a potentially explosive or flammable atmosphere.

WARNING

1. This gas fired heating equipment must be vented - do not operate unvented.

2. A built-in power exhauster is provided - additional external power exhausters are not required or permitted.

3. If you are replacing an existing heater, it may be necessary to resize the venting systems. Improperly sized venting systems can result in vent gas leakage or the formation of condensate. Refer to the National Fuel Gas Code ANSI Z223.1 or CSA B149.1 latest edition. Failure to follow these instructions can result in injury or death.

4. Under no circumstances should two sections of double wall vent pipe be joined together within one horizontal vent system due to the inability to verify complete seal of inner pipes.

5. All field gas piping must be pressure/leak tested prior to operation. Never use an open flame. Use a soap solution or equivalent for testing.

7. Disconnect power supply before making wiring connections to prevent electrical shock and equipment damage.

8. All appliances must be wired strictly in accordance with wiring diagram furnished with the appliance. Any wiring different from the wiring diagram could result in a hazard to persons and property.

9. Any original factory wiring that requires replacement must be replaced with wiring material having a temperature rating of at least 105°C.

10. To reduce the opportunity for condensation, the minimum sea level input to the appliance, as indicated on the serial plate, must not be less than 5% below the rated input, or 5% below the minimum rated input of dual rated units.

11. Ensure that the supply voltage to the appliance, as indicated on the serial plate, is not 5% greater than the rated voltage.

12. When servicing or repairing this equipment, use only factory-approved service replacement parts. A complete replacement parts list may be obtained by contacting Modine Manufacturing Company. Refer to the rating plate on the appliance for complete appliance model number, serial number, and company address. Any substitution of parts or controls not approved by the factory will be at the owner’s risk.

CAUTION

1. Installation must conform with local building codes or in the absence of local codes, with Part 7, Venting of Equipment, of the National Fuel Gas Code, ANSI Z223.1 (NFPA 54) - latest edition. In Canada installation must be in accordance with CSA B149.1.

2. Purging of air from gas supply line should be performed as described in ANSI Z223.1 - latest edition “National Fuel Gas Code”, or in Canada in CAN/CGA-B149 codes.

3. Do not attempt to reuse any mechanical or electrical controller which has been wet. Replace defective controller.

4. Ensure that the supply voltage to the appliance is not 5% less than the rated voltage.

IMPORTANT

1. To prevent premature heat exchanger failure, do not locate NY gas-fired appliances in areas where corrosive vapors (i.e. chlorinated, halogenated or acid) are present in the atmosphere.

2. To prevent premature heat exchanger failure, the input to the appliance, as indicated on the serial plate, must not exceed the rated input by more than 5%.

3. To prevent premature heat exchanger failure, observe heat exchanger tubes by looking at the heat exchanger through field installed access openings in connecting ductwork. If the tubes become red while blower and duct furnace are in operation, additional baffles must be inserted between blower and duct furnace to assure uniform air flow across the heat exchanger.

4. To prevent premature heat exchanger failure, with all control systems, a blower starting mechanism must be provided so that the blower is running or energized within 45 seconds of the gas control operation.

5. Start-up and adjustment procedures should be performed by a qualified service agency.

6. To check most of the Possible Remedies in the troubleshooting guide listed in Table 24.1, refer to the applicable sections of the manual.

Table of Contents

- Inspection on Arrival ... 1
- Special Precautions ... 2
- SI (Metric) Conversion Factors 3
- Unit Location .. 3
- Location Recommendations 3
- Combustible Material and Service Clearances 3
- Unit Suspension .. 3
- Installation ... 4
- Direction of Airflow .. 4
- Duct Installation and Airflow Distribution 4
- Venting ... 5
- Gas Connections ... 10
- Considerations for Elevation 11
- Electrical Connections 12
- Start-Up Procedure ... 12
- Pilot Burner and Main Burner Adjustment 13
- Air Shutter Adjustment 14
- Control Operating Sequence 14
- Variable Air Movement Applications 15
- Gas Control Options 16
- Performance .. 18
- Air Temperature and External Static Pressure Limits 18
- Pressure Drop Curves 18
- Dimensions ... 19
- Maintenance .. 22
- Manifold Assembly Removal 23
- Burner and Pilot Assembly Removal 23
- Service & Troubleshooting 24-25
- Replacement Parts Ordering 26
- Model Identification 27
- Commercial Warranty Back Page
UNIT LOCATION

DANGER
Appliances must not be installed where they may be exposed to a potentially explosive or flammable atmosphere.

IMPORTANT
To prevent premature heat exchanger failure, do not locate ANY gas-fired appliances in areas where corrosive vapors (i.e. chlorinated, halogenated or acid) are present in the atmosphere.

Location Recommendations
1. When locating the furnace, consider general space and heating requirements, availability of gas and electrical supply, and proximity to vent locations.
2. Unit must be installed on the positive pressure side of the circulating blower.
3. Be sure the structural support at the unit location site is adequate to support the weight of the unit. For proper operation the unit must be installed in a level horizontal position.
4. Do not install units in locations where the flue products can be drawn into the adjacent building openings such as windows, fresh air intakes, etc.
5. Be sure that the minimum clearances to combustible materials and recommended service clearances are maintained. Units are designed for installation on non-combustible surfaces with the minimum clearances shown in Figure 3.1 and Table 3.2.
6. Units installed downstream of refrigeration systems, or exposed to inlet air temperatures of 40°F or less, may experience condensation. Therefore, provisions should be made for disposal of condensate. Means have been provided in the bottom pan of the unit to accommodate a condensate drain line connection flange.
7. When locating units, it is important to consider that the combustion air and exhaust vent piping must be connected to the outside atmosphere, vent terminals should be located adjacent to one another. The maximum equivalent lengths are listed in Table 6.1 on page 6.
8. In garages or other sections of aircraft hangars such as offices and shops that communicate with areas used for servicing or storage, keep the bottom of the unit at least 7’ above the floor unless the unit is properly guarded to provide user protection from moving parts. In parking garages, the unit must be installed in accordance with the standard for parking structures ANSI/NFPA 88A, and in repair garages the standard for repair garages NFPA #88B. In Canada, installation of unit heaters in airplane hangars must be in accordance with the requirements of the enforcing authority, and in public garages in accordance with the current CAN/CGA-B149 codes.
9. Do not install units in locations where gas ignition system is exposed to water spray, rain, or dripping water.

UNIT SUSPENSION
Be sure the means of suspension is adequate to support the weight of the unit (see Dimensional Data for unit weights). For proper operation, the unit must be installed in a level horizontal position. Combustible material and service clearances as specified in Figure 3.1 and Table 3.2 must be strictly maintained.
1. Four 1/2” - 13NC tapped holes in top of furnace are provided to accept ceiling hangers. To assure that flames are directed into the center of the heat exchanger tubes, the furnace must be supported in a vertical position. Use a spirit level to ensure that unit is suspended correctly.
2. NOTE: A pipe hanger adapter kit, shown in Figure 3.2, is available as an accessory from the factory. One kit consists of two drilled 3/4” IPS pipe caps and two 1/2 - 13 x 1-3/4” capscrews to facilitate threaded pipe suspension. Two kits are required for mounting all duct furnace models.

Table 3.2 - Recommended Service Clearances

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Access Side (A)</th>
<th>Non-Access Side (B)</th>
<th>Top (C)</th>
<th>Bottom (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>18”</td>
<td>6”</td>
<td>10”</td>
<td>0”</td>
</tr>
<tr>
<td>100/125</td>
<td>20”</td>
<td>25”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150/175</td>
<td>27”</td>
<td>30”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200/225</td>
<td>30”</td>
<td>350/400</td>
<td>30”</td>
<td>30”</td>
</tr>
<tr>
<td>350/400</td>
<td>41”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.2 - Suspension Methods

(Threaded Rod) (Pipe Adapter Kit)
INSTALLATION

Direction of Airflow
Select proper direction of airflow. For models in which the 10th digit of the model number is an "L" for Low Temperature Rise, the airflow direction is fully reversible without modification to the duct furnace. See Airflow Reversal Note.

If the unit is provided with an air distribution baffle (models in which the 10th digit of the model number is an "H" for High Temperature Rise), the air baffle must face the air inlet direction as shown in Figure 4.1. If it is necessary to reverse the airflow direction, remove the four screws securing the air distribution baffle, reverse the air distribution baffle to the air inlet side and replace the screws. See Airflow Reversal Note.

Figure 4.1 - Air Distribution Baffle Location

Airflow Reversal Note: If factory installed discharge air options (thermostat, freeze protection, etc.) were provided, these options would have to be relocated to the discharge air side of the duct furnace.

Duct Installation (refer to Figure 4.2)
1. The furnace is designed to accept straight ductwork. All connections between the ductwork and the furnace MUST be airtight to prevent air leakage. Seams with cracks in ductwork should be caulked and/or taped and be of permanent type.
2. Provide removable access panels on both the upstream and downstream sides of the ductwork. These openings should be large enough to view smoke or reflect light inside the casing to indicate leaks in the heat exchanger and to check for hot spots on heat exchangers due to poor air distribution or lack of sufficient air (CFM).

Figure 4.2 - Duct Connections

Airflow Distribution

IMPORTANT
To prevent premature heat exchanger failure, observe heat exchanger tubes by looking at the heat exchanger through field installed access openings in connecting ductwork. If the tubes become red while blower and duct furnace are in operation, additional baffles must be inserted between blower and duct furnace to assure uniform air flow across the heat exchanger.

1. Provide uniform air distribution over the heat exchanger. Use turning vanes where required (see Figure 4.3) to obtain uniform air distribution. Avoid installing as in “G”, “H” & “J” of Figure 4.3.
2. A bottom, horizontal discharge type blower should be installed at least 12" from the furnace (See "A", Figure 4.3).
3. A top, horizontal discharge type blower should be installed at least 24" from the furnace (See "B", Figure 4.3). Provide air baffle at top of duct to deflect air down to the bottom of heat exchanger.

Figure 4.3 - Typical Duct & Airflow Installation

- **A**
 - Turning Vanes
 - 3" Min.
 - 3" Max.
 - 12" Min.
 - 12" Min.
 - Baffle
 - 24" Min.

- **B**
 - Turning Vanes
 - 3" Min.
 - 3" Max.
 - 12" Min.
 - Air Baffle

- **C**
 - Dimensions ‘B’ should never be less than 1/3 of ‘A’.

- **Recommended Installations**

- **Not Recommended Installations**
INSTALLATION - VENTING

WARNING

1. Gas fired heating equipment must be vented - do not operate unvented.
2. A built-in power exhauter is provided - additional external power exhauters are not required or permitted.
3. If you are replacing an existing heater, it may be necessary to resize the venting systems. Improperly sized venting systems can result in vent gas leakage or the formation of condensate. Refer to the National Fuel Gas Code ANSI Z223.1 or CSA B149.1 latest edition. Failure to follow these instructions can result in serious injury or death.
4. Under no circumstances should two sections of double wall vent pipe be joined together within one horizontal vent system due to the inability to verify complete seal of inner pipes.

CAUTION

Installation must conform with local building codes or in the absence of local codes, with Part 7, Venting of Equipment, of the National Fuel Gas Code, ANSI Z223.1 (NFPA 54) - latest edition. In Canada installation must be in accordance with CSA B149.1.

Model DFS duct furnaces must be vented with the proper passageway as described in these instructions to convey flue gases from the unit or the vent connector to the outside atmosphere. The heaters must also have a separate combustion air intake pipe to bring in fresh air for combustion from the outside atmosphere.

The venting instructions are organized in sections, based on installation type. The sections are identified as follows:

<table>
<thead>
<tr>
<th>Section</th>
<th>Installation Instructions by Vent System Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>General Instructions for ALL installations</td>
</tr>
<tr>
<td>B</td>
<td>VERTICAL 2-PIPE vent systems ①</td>
</tr>
<tr>
<td>C</td>
<td>HORIZONTAL 2-PIPE vent systems ①</td>
</tr>
<tr>
<td>D</td>
<td>HORIZONTAL AND VERTICAL CONCENTRIC vent systems ①</td>
</tr>
</tbody>
</table>

① The differences between Vertical and Horizontal vent systems in 2-Pipe or Concentric Vent configurations will be identified in "Section A - General Instructions - All Units".

Section A - General Instructions - All Units

A1. If the heater being installed is replacing existing equipment and using the existing vent system from that equipment, inspect the venting system for proper size and horizontal pitch, as required in the National Fuel Gas Code ANSI Z223.1 or CSA B149.1 Installation Code-latest edition and these instructions. Determine that there is no blockage or restriction, leakage, corrosion and other deficiencies, which could cause an unsafe condition.

A2. The combustion air and vent pipes should be galvanized steel or other suitable corrosion resistant material. Follow the National Fuel Gas Code for minimum thickness of vent material. The minimum thickness for connectors varies depending on the pipe diameter. Do not vent unit with PVC or other forms of plastic venting material.

A3. All heaters come with factory installed vent and combustion air adapters for attaching the pipe to the heater. The pipe diameters are 4" for model sizes 75-175 and 6" for model sizes 200-400. All units are classified as Category III vented appliances, which defined by ANSI is positive pressure, non-condensing, and requires the vent system to be gas tight. Attach the vent pipe to the adapter with 3 corrosion resistant screws. (Drill pilot holes through the vent pipe and adapter prior to screwing in place). Vent pipe must not be smaller than the connector size. Category III vent systems listed by a nationally recognized agency and matching the diameters specified may be used. Different brands of vent materials may not be intermixed.

A4. Limit the total equivalent vent pipe length to a minimum of 5’ and a maximum as shown in Table 5.1, making the vent system as straight as possible. Total equivalent vent pipe length must include elbows. The equivalent length of a 4” elbow is 5’ and for a 6” elbow is 7’.

Table 5.1 - Individual Total Equivalent Lengths for Combustion Air and Exhaust Vent Pipes

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Minimum (ft)</th>
<th>Maximum (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>100, 125, 150, 175</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>200, 225</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>250, 300</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>350, 400</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

A5. A minimum of 12” straight pipe is recommended from the flue outlet before turns in the vent pipe.

A6. Horizontal sections of vent and combustion air pipes are to be installed with a minimum downward slope from the appliance of 1/4 inch per foot and suspended securely from overheard structures at points not greater than 3’ apart.

A7. Fasten individual lengths of vent together with at least three corrosion resistant sheet metal screws.

A8. Keep single wall vent pipe at least 6” from combustible materials. For double wall vent pipe, follow the vent pipe manufacturer’s clearances to combustibles. The minimum distance from combustible materials is based on the combustible material surface not exceeding 160°F. Clearance from the vent pipe (or the top of the unit) may be required to be greater than 6” if heat damage other than fire could result (such as material distortion or discoloration).

A9. Avoid venting through unheated space when possible. When venting does pass through an unheated space or if the unit is installed in an environment that promotes condensation, insulate runs greater than 5’ to minimize condensation. Inspect for leakage prior to insulating and use insulation that is noncombustible with a rating of not less than 400°F. Install a tee fitting at the low point of the vent system and provide a drip leg with a clean out cap as shown in Figure 7.1.

A10. When the vent passes through a combustible INTERIOR wall or floor, a metal thimble 4” greater than the vent diameter is necessary. If there is 6’ or more of vent pipe in the open space between the appliance and where the vent pipe passes through the wall or floor, the thimble need only be 2” greater than the diameter of the vent pipe. If a thimble is not used, all combustible material must be cut away to provide 6” of clearance. Where authorities have jurisdiction type B vent may be used for the last section of vent pipe to maintain clearance to combustibles while passing through wall or floor. See Figure 6.1. Any material used to close the opening must be noncombustible.
INSTALLATION - VENTING

Figure 6.1 - Venting Through Combustible Roof or Wall

A11. All seams and joints of un-gasketed single wall pipe must be sealed with metallic tape (3M aluminum foil tapes 433 or 363 are acceptable) or silastic suitable for temperatures up to 400°F. Wrap the tape two full turns around the vent pipe. One continuous section of double wall vent pipe may be used within the vent system. Refer to instruction A12 in “Section A – General Instructions – All Units” for attaching double wall pipe to single wall pipe.

A12. The following are General Instructions for Double Wall (Type B) Terminal Pipe Installation. Under no circumstances should two sections of double wall vent pipe be joined together within one horizontal vent system due to the inability to verify complete seal of inner pipes.

How to attach a single wall vent terminal to double wall (Type B) vent pipe:
1. Look for the "flow" arrow on the vent pipe.
2. Slide the vent terminal inside the exhaust end of the double wall vent pipe.
3. Drill (3) holes through the pipe and the vent terminal. Use 3/4" long sheet metal screws, attach the cap to the pipe. Do not over tighten.

How to connect a single wall vent system to a double wall (Type B) vent pipe:
1. Slide the single wall pipe inside the inner wall of the double wall pipe.
2. Drill (3) holes through both walls of the single and double wall vent pipes. Using 3/4" sheet metal screws, attach the two pieces of pipe. Do not over tighten.
3. The gap between the single and double wall pipe must be sealed but it is not necessary to fill the full volume of the annular area. To seal, run a large bead of 400°F silastic around the gap.

A13. Do NOT vent this appliance into a masonry chimney.
A14. Do NOT use dampers or other devices in the vent or combustion air pipes.
A15. The venting system must be exclusive to a single appliance, and no other appliance is allowed to be vented into it.
A16. Precautions must be taken to prevent degradation of building materials by flue products.
A17. Single wall vent pipe must not pass through any unoccupied attic, inside wall, concealed space, or floor.
A18. Uninsulated single wall vent pipe must not be used outdoors for venting appliances in regions where the 99% winter design temperature is below 32°F.

A19. Long runs of horizontal or vertical combustion air pipes may require insulation in very cold climates to prevent the buildup of condensation on the outside of the pipe where the pipe passes through conditioned spaces.
A20. Vent termination clearances must be maintained:

Table 6.1 - Vent Termination Clearances

<table>
<thead>
<tr>
<th>Structure</th>
<th>Minimum Clearances for Vent Terminal Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced air inlet within 10 feet</td>
<td>3 feet above</td>
</tr>
<tr>
<td>Combustion air inlet of another appliance</td>
<td>6 feet all directions</td>
</tr>
<tr>
<td>Door, window, gravity air inlet, or any building opening</td>
<td>4 feet horizontal and below 1 foot above</td>
</tr>
<tr>
<td>Electric meter, gas meter, gas regulator, and relief equipment</td>
<td>4 feet horizontal (U.S.)</td>
</tr>
<tr>
<td>Gas regulator</td>
<td>6 feet horizontal (Canada)</td>
</tr>
<tr>
<td>Adjoining building or parapet wall</td>
<td>6 feet all directions</td>
</tr>
<tr>
<td>Adjacent public walkways</td>
<td>7 feet all directions</td>
</tr>
<tr>
<td>Grade (ground level)</td>
<td>3 feet above</td>
</tr>
</tbody>
</table>

① Do not terminate the vent directly above a gas meter or regulator.
② The vent must be at least 6" higher than anticipated snow depth.

A21. Vertical combustion air pipes should be fitted with a tee with a drip leg and a clean out cap to prevent against the possibility of any moisture in the combustion air pipe from entering the unit. The drip leg should be inspected and cleaned out periodically during the heating season.
A22. In addition to following these General Instructions, specific instructions for Vertical and Horizontal vent systems in 2-Pipe or Concentric Vent configurations must also be followed. The following outlines the differences:

Vertical Vent System Determination
- Vertical vent systems terminate vertically (up) (an example is shown in Figure 7.1).
- Determine the venting configuration as follows:
 > For two building penetrations through the wall or roof (one for the combustion air inlet pipe and one for the vent pipe), proceed to “Section B - Vertical 2-Pipe Venting”.
 > For a single larger building penetration through the wall or roof, through which both the combustion air inlet and vent pipes will pass, proceed to “Section D - Horizontal and Vertical Concentric Venting”.
 > For all other cases, proceed to the next section for Horizontal Vent System Determination.

Horizontal Vent System Determination
- Horizontal vent systems terminate horizontally (sideways) (an example is shown in Figure 8.1).
- Determine the venting configuration as follows:
 > For two building penetrations through the wall or roof (one for the combustion air inlet pipe and one for the vent pipe), proceed to “Section C - Horizontal 2-Pipe Venting”.
 > For a single larger building penetration through the wall or roof, through which both the combustion air inlet and vent pipes will pass, proceed to “Section D - Horizontal and Vertical Concentric Venting”.

① See Instruction A12 for attaching single wall pipe to double wall pipe
Section B - Vertical 2-Pipe Vent System Installation

B1. This section applies to vertically vented 2-pipe (one combustion air inlet pipe and one vent pipe) vent systems and is in addition to “Section A - General Instructions - All Units”.

B2. Vertical vent systems terminate vertically (up).

B3. It is recommended to install a tee with drip leg and clean out cap as shown in Figures 7.1 or 7.2.

B4. The combustion air and vent pipes must be terminated with (2) Gary Steel Model 1092 caps.

B5. Vertical vents must terminate a minimum horizontal and vertical distance from roof lines and adjacent walls or obstructions. These minimum distances are outlined in Figure 7.1 and Table 7.1 or Figure 7.2.

B6. The vent must terminate at least 1 foot above and 16 inches horizontally from the combustion air inlet.

B7. Once venting is complete, proceed section titled “Installation - Gas Connections”.

Figure 7.1 - Vertical Venting - 2 Pipes Sloped Roof

<table>
<thead>
<tr>
<th>Rise X (in)</th>
<th>Roof Pitch</th>
<th>Min Height H (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>Flat to 6/12</td>
<td>1.00</td>
</tr>
<tr>
<td>6-7</td>
<td>6/12 to 7/12</td>
<td>1.25</td>
</tr>
<tr>
<td>7-8</td>
<td>7/12 to 8/12</td>
<td>1.50</td>
</tr>
<tr>
<td>8-9</td>
<td>8/12 to 9/12</td>
<td>2.00</td>
</tr>
<tr>
<td>9-10</td>
<td>9/12 to 10/12</td>
<td>2.50</td>
</tr>
<tr>
<td>10-11</td>
<td>10/12 to 11/12</td>
<td>3.25</td>
</tr>
<tr>
<td>11-12</td>
<td>11/12 to 12/12</td>
<td>4.00</td>
</tr>
<tr>
<td>12-14</td>
<td>12/12 to 14/12</td>
<td>5.00</td>
</tr>
<tr>
<td>14-16</td>
<td>14/12 to 16/12</td>
<td>6.00</td>
</tr>
<tr>
<td>16-18</td>
<td>16/12 to 18/12</td>
<td>7.00</td>
</tr>
<tr>
<td>18-20</td>
<td>18/12 to 20/12</td>
<td>7.50</td>
</tr>
<tr>
<td>20-21</td>
<td>20/12 to 21/12</td>
<td>8.00</td>
</tr>
</tbody>
</table>

* Size according to expected snow depth.

Section C - Horizontal 2-Pipe Vent System Installation

C1. This section applies to horizontally vented 2-pipe vent systems (one combustion air inlet pipe and one vent pipe) and is in addition to “Section A - General Instructions - All Units”.

C2. Horizontal vent systems terminate horizontally (sideways).

C3. All horizontal vents must be terminated with a Gary Steel 1092 vent cap. The cap must terminate a minimum distance from the external wall, as summarized in Figure 8.1.

C4. The termination of horizontally vented system must extend 12 inches beyond the exterior surface of an exterior wall.

C5. The combustion air pipe must be a minimum of 16 inches below the vent pipe, and 24 inches from the exterior wall.

C6. Construct the vent system as shown in Figure 8.1.
C7. When horizontal vents pass through a combustible wall (up to 8 inches thick), the vent passage must be constructed and insulated as shown in Figure 8.2.

C8. The vent must be supported as shown in Figure 8.2.

C9. When condensation may be a problem, the vent system shall not terminate over public walkways or over an area where condensate or vapor could create a nuisance or hazard or could be detrimental to the operation of regulators, relief openings, or other equipment.

Figure 8.2 - Exhaust Vent Construction Through Combustible Walls and Support Bracket

C10. Maintain a 1/4" per foot downward slope away from the heater and place a drip leg with clean out near the exit of the vent as shown in Figure 8.1, or allow the condensate to drip out the end.

C11. For a vent termination located under an eave, the distance of the overhang must not exceed 24". The clearance to combustibles above the exterior vent must be maintained at a minimum of 12". Consult the National Fuel Gas Code for additional requirements for eaves that have ventilation openings.

C12. Once venting is complete, proceed section titled “Installation - Gas Connections”.

Section D - Concentric Vent System Installation

D1. This section applies to both horizontally and vertically vented concentric vent systems as defined in “Section A – General Instructions – All Units”, and is in addition to the instructions in that section.

D2. When utilizing the concentric vent option, it should have been predetermined whether the appliance will be horizontally or vertically vented. Before proceeding, verify that the concentric vent kit received contains the correct components for the installation:

For Vertically Vented Units (Refer to Figure 8.3):

- Concentric adapter assembly (same for horizontal and vertical kits)
- Standard Gary Steel 1092 vent termination
- Specially designed inlet terminal (part #5H75154)

For Horizontally Vented Units (Refer to Figure 8.4):

- Concentric adapter assembly (same for horizontal and vertical kits)
- Special vent termination cap (part #5H75150)
- Special inlet air guard

D3. Once the kit contents have been verified as correct for the direction of venting, the concentric vent adapter box is to be installed. Determine the location of the box. Be sure to maintain all clearances as listed in these instructions.

D4. The adapter box is to be mounted on the interior side of the building. It must not be mounted outside the building. The adapter box has integral mounting holes for ease of installation. When horizontal venting multiple units, the minimum spacing between any sides of the adapter boxes must be 18" and boxes must not overlap in the vertical plane (above or below). When condensation may be a problem, the vent system shall not terminate over public walkways or over an area where condensate or vapor could create a nuisance or hazard or could be detrimental to the operation of regulators, relief openings, or other equipment.

CAUTION

The concentric vent adapter box must be installed inside of the structure or building. Do not install this box on the exterior of a building or structure.
INSTALLATION - VENTING

D5. The adapter box can be mounted flush to the wall (for horizontal kits) or to the ceiling (for vertical kits). The box can also be offset from the wall or ceiling by using field supplied brackets. When mounting the box, consider serviceability and access to the vent and combustion air pipes. If the box is to be mounted using field supplied brackets, these brackets must be strong enough to rigidly secure the box to the wall or ceiling, and should be made from corrosion resistant material.

D6. Determine the length of the vent pipe and combustion air inlet pipe for the selected location. THE VENT PIPE WILL PASS THROUGH THE CONCENTRIC VENT BOX. THE LAST SECTION OF VENT PIPE IS A CONTINUOUS LENGTH OF DOUBLE WALL "B" VENT. See section A12 for attaching and terminating double wall pipe. Begin with pipe lengths on the concentric pipe side of the adapter box referring to Figure 9.1. These pipes will extend through the building wall or roof as well as any added length for the thickness of the wall and the offset from any field installed brackets.

For Vertical Concentric Vent Kits (refer to Figure 8.3):
- The bottom of the combustion air intake pipe must terminate above the snow line, or at least 12 inches above the roof, whichever distance is greater.
- The bottom of the vent cap must terminate at least 6 inches above the top of the combustion air intake cap.

For Horizontal Concentric Vent Kits (refer to Figure 8.4):
- The combustion air intake pipe must terminate at least 1 inch from the wall to prevent water from running down the wall and into the pipe.
- The back of the vent cap must terminate at least 14 inches from the combustion air intake pipe.

D7. Cut the concentric side vent and combustion air pipes to the proper length as determined in the previous step. Note that the vent pipe diameter is 4" and the combustion air intake pipe diameter is 6" for model sizes 75-175, and 6" and 8" respectively for model sizes 200-400. The pipes must be single wall galvanized or stainless steel material, except for the last section of vent pipe, which must be one continuous length of double wall B-vent extended through the concentric vent box and combustion air inlet pipe on the concentric side of the box.

D8. Allow the concentric side vent pipe to pass through the concentric vent adapter box, as shown in Figure 9.1. Attach the double wall vent pipe to the single wall vent pipe that goes to the unit. Be sure to seal the joint and the open area around the double wall vent. Seal all joints and seams using sealant suitable for temperatures up to 400°F.

D9. Slide the combustion air pipe over the vent pipe and attach to the air inlet of the concentric adapter box, as shown in Figure 9.1, using at least 3 corrosion resistant sheet metal screws. Seal the joint and seam using sealant suitable for temperatures up to 400°F.

D10. Place this assembly (the adapter box, vent pipe and combustion air pipe) through the wall or roof and verify that the distance requirements as defined in Step D7 are met. Securely attach the assembly building.

D11. From outside the building, caulk the gap between the combustion air intake pipe and the building penetration.

D12. Attach the combustion air intake and vent pipe terminations as follows:

For Vertical Concentric Vent Kits (refer to Figure 8.3):
- Slide the combustion air cap down over the vent pipe and fasten it to the combustion air pipe with at least 3 corrosion resistant sheet metal screws.
- Attach the vent cap to the vent pipe using at least 3 corrosion resistant sheet metal screws. Refer to instruction A12 for connecting terminal to double wall pipe.
- Caulk the gap between the combustion air cap and the vent pipe with silicone sealant, or other appropriate sealants suitable for metal to metal contact and for temperatures up to 400° F.

For Horizontal Concentric Vent Kits (refer to Figure 8.4):
- Attach the combustion air intake guard using corrosion resistant screws at the end of the combustion air intake pipe to prevent animals and debris from entering.
- Attach the vent cap to the vent pipe using at least 3 corrosion resistant sheet metal screws.

D13. Install vent pipe and combustion air pipe between unit heater and concentric vent adapter box as outlined in "Section A – General Instructions – All Units".

D14. Once venting is complete, proceed to the section titled "Installation - Gas Connections".
Gas Connections

WARNING

1. All field gas piping must be pressure/leak tested prior to operation. Never use an open flame. Use a soap solution or equivalent for testing.
2. Gas pressure to appliance controls must never exceed 14" W.C. (1/2 psi).
3. To reduce the opportunity for condensation, the minimum sea level input to the appliance, as indicated on the serial plate, must not be less than 5% below the rated input, or 5% below the minimum rated input of dual rated units.

CAUTION

Purging of air from gas supply line should be performed as described in ANSI Z223.1 - latest edition “National Fuel Gas Code”, or in Canada in CAN/CGA-B149 codes.

IMPORTANT

To prevent premature heat exchanger failure, the input to the appliance, as indicated on the serial plate, must not exceed the rated input by more than 5%.

1. Installation of piping must conform with local building codes, or in the absence of local codes, with the National Fuel Gas Code, ANSI Z223.1 (NFPA 54) - Latest Edition. In Canada, installation must be in accordance with CAN/CGA-B149.1 for natural gas units and CAN/CGA-B149.2 for propane units.
2. Piping to units should conform with local and national requirements for type and volume of gas handled, and pressure drop allowed in the line. Refer to Table 10.1 to determine the cubic feet per hour (cfh) for the type of gas and size of unit to be installed. Using this cfh value and the length of pipe necessary, determine the pipe diameter from Table 11.2. Where several units are served by the same main, the total capacity, cfh and length of main must be considered. Avoid pipe sizes smaller than 1/2". Table 10.1 allows for a 0.3" W.C. pressure drop in the supply pressure from the building main to the unit. The inlet pressure to the unit must be 6-7" W.C. for natural gas and 11-14" W.C. for propane gas. When sizing the inlet gas pipe diameter, make sure that the unit supply pressure can be met after the 0.3" W.C. has been subtracted. If the 0.3" W.C. pressure drop is too high, refer to the Gas Engineer’s Handbook for other gas pipe capacities.
3. The gas piping to the unit can enter the unit from the side of the unit or from below. Install a ground joint union with brass seat and a manual shut-off valve external of the unit casing, and adjacent to the unit for emergency shut-off and easy servicing of controls, including a 1/8" NPT plugged tapping accessible for test gauge connection (See Figure 10.1). Provide a sediment trap before each unit in the line where low spots cannot be avoided. (See Figure 10.1).
4. When Pressure/Leak testing, pressures above 14" W.C. (1/2 psi), close the field installed shut-off valve, disconnect the appliance and its combination gas control from the gas supply line, and plug the supply line before testing. When testing pressures 14" W.C. (1/2 psi) or below, close the manual shut-off valve on the appliance before testing.

Table 10.1 - Burner Orifice Sizing and Gas Consumption

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Orifice Qty</th>
<th>Natural</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>1</td>
<td>72.1</td>
<td>30.0</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>96.1</td>
<td>40.0</td>
</tr>
<tr>
<td>125</td>
<td>2</td>
<td>120.2</td>
<td>50.0</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
<td>144.2</td>
<td>60.0</td>
</tr>
<tr>
<td>175</td>
<td>3</td>
<td>168.3</td>
<td>70.0</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>192.3</td>
<td>80.0</td>
</tr>
<tr>
<td>225</td>
<td>3</td>
<td>216.3</td>
<td>90.0</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>240.4</td>
<td>100.0</td>
</tr>
<tr>
<td>300</td>
<td>4</td>
<td>288.7</td>
<td>120.0</td>
</tr>
<tr>
<td>350</td>
<td>6</td>
<td>336.5</td>
<td>140.0</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>384.6</td>
<td>160.0</td>
</tr>
</tbody>
</table>

Table 10.2 - Gas Pipe Capacities (Cu. Ft. per Hour)

<table>
<thead>
<tr>
<th>Pipe Length (feet)</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2"</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>80</td>
<td>43</td>
</tr>
<tr>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>125</td>
<td>34</td>
</tr>
<tr>
<td>150</td>
<td>31</td>
</tr>
</tbody>
</table>

1. Based on natural gas properties of 1040 Btu/Cu. Ft. and specific gravity of 0.60.
2. Based on propane gas properties of 2500 Btu/Cu. Ft. and specific gravity of 1.53.

Figure 10.1 - Recommended Sediment Trap/Manual Shut-off Valve Installation - Side or Bottom Gas Connection

- Manual shut-off valve is in the “OFF” position when handle is perpendicular to controls.
- Sediment trap is at least 3" from the appliance and its combination gas control from the gas supply line, and plug the supply line before testing. When testing pressures 14" W.C. (1/2 psi) or below, close the field installed shut-off valve, disconnect the appliance and its combination gas control from the gas supply line, and plug the supply line before testing.

Table 10.2 - Gas Pipe Capacities (Cu. Ft. per Hour)

<table>
<thead>
<tr>
<th>Pipe Length (feet)</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2"</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>80</td>
<td>43</td>
</tr>
<tr>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>125</td>
<td>34</td>
</tr>
<tr>
<td>150</td>
<td>31</td>
</tr>
</tbody>
</table>

1. Capacities in Cubic Feet per Hour through Schedule 40 pipe with maximum 0.3" W.C. pressure drop with up to 14" W.C. gas pressure. Specific gravity is 0.60 for Natural gas and 1.50 for Propane gas.
2. For Pipe Capacity with Propane Gas, divide Natural gas capacity by 1.6. Example: What is the Propane gas pipe capacity for 60 feet of 1-1/4" pipe? The Natural gas capacity is 400 CFH. Divide by 1.6 to get 250 CFH for Propane gas.
INSTALLATION

Considerations for Elevation
The standard rating for Model DFS is certified for elevations up to 2,000 feet above sea level. Operation at elevations above 2,000 feet requires ratings be reduced 4% for each 1,000 feet above sea level per ANSI Z223.1. The exception is for units in Canada, CSA requires that ratings be reduced 10% for elevations between 2,001 and 4,500 feet. The following instructions are for units that will be installed over 2,000 feet elevation. If this does not apply, you may skip ahead to the Electrical Connections section on page 12.

Manifold Pressure Adjustment
The unit manifold pressure is factory set for operation at elevations up to 2,000 feet as follows:

- For **Natural Gas** units, 3.5" W.C. based on a gas heating value of 1,050 BTU/ft³.
- For **Propane Gas** units, 10.0" W.C. based on a gas heating value of 2,500 BTU/ft³.

For higher elevations, some utility companies may derate the BTU content (heating value) of the gas provided at altitude to a lower value to allow certain heating appliances to be used with no manifold pressure adjustments. For this reason it is necessary that the supplying utility be contacted for detailed information about the gas type and BTU content (heating value) before operating any heater. Table 11.1 shows the standard derated heating values of natural and propane gases at various elevations.

Table 11.1 - Gas Heating Values at Altitude (Btu/ft³)

<table>
<thead>
<tr>
<th>Altitude (ft)</th>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2,000</td>
<td>1,050</td>
<td>2,500</td>
</tr>
<tr>
<td>2,001-3,000</td>
<td>929</td>
<td>2,212</td>
</tr>
<tr>
<td>3,001-4,000</td>
<td>892</td>
<td>2,123</td>
</tr>
<tr>
<td>4,001-4,500</td>
<td>874</td>
<td>2,080</td>
</tr>
<tr>
<td>4,501-5,000</td>
<td>856</td>
<td>2,038</td>
</tr>
<tr>
<td>5,001-6,000</td>
<td>822</td>
<td>1,957</td>
</tr>
<tr>
<td>6,001-7,000</td>
<td>789</td>
<td>1,879</td>
</tr>
<tr>
<td>7,001-8,000</td>
<td>757</td>
<td>1,803</td>
</tr>
<tr>
<td>8,001-9,000</td>
<td>727</td>
<td>1,731</td>
</tr>
<tr>
<td>9,001-10,000</td>
<td>698</td>
<td>1,662</td>
</tr>
</tbody>
</table>

① Values shown are for 3.5" W.C. manifold pressure for Natural Gas and 10.0" W.C. for Propane Gas. If the local utility supplies gas with a different Btu/ft³ value, use Equation 11.1 to calculate the required manifold pressure.
② Gas heating values shown are derated 4% per 1,000' of elevation (10% between 2,000' and 4,500' elevation in Canada) in accordance with ANSI Z223.1 and CSA-B149, respectively.
③ 945 Btu/ft³ for Canada
④ 2,250 Btu/ft³ for Canada
⑤ When installed at altitudes above 2,000', a pressure switch may need to be changed. Refer to Table 11.2 to determine if a switch change is required.

If the utility is supplying gas with heating values **SAME** as shown in Table 11.1, the manifold pressure should remain set to 3.5" W.C. for natural gas and 10.0" W.C. for propane gas and you may proceed to the section on this page titled “Selection of the Proper High Altitude Kit”.

If the utility is supplying gas with heating values **DIFFERENT** than shown in Table 11.1, use Equation 11.1 to determine the appropriate manifold pressure for the elevation and gas heating value being supplied. Note what that value is, as it will be needed later for Start-Up. Proceed to the section on this page titled “Selection of the Proper High Altitude Kit”.

Equation 11.1 - Manifold Pressure for Gas Heating Values Different Than Shown in Table 11.1

\[
MP_{ELEV} = \left(\frac{BTU_{TBL}}{BTU_{ACT}}\right)^2 \times MP_{SL}
\]

Where:

- \(MP_{ELEV}\) = Manifold Pressure (" W.C.) at installed elevation
- \(BTU_{TBL}\) = BTU/ft³ content of gas from Table 11.1
- \(BTU_{ACT}\) = BTU/ft³ content of gas obtained from the utility company
- \(MP_{SL}\) = Manifold Pressure (" W.C.), at Sea Level (use 3.5" W.C. for natural gas and 10.0" W.C. for propane)

NOTE: For units equipped with two-stage or modulating gas controls, only the high fire manifold pressure needs to be adjusted. No adjustments to the low fire manifold pressure are necessary on these units.

Selection of the Proper High Altitude Kit
All units installed at elevations greater than 2,000 feet above sea level require a kit, in addition to potential manifold pressure adjustment outlined in the previous step. To determine the proper kit to use, refer to Table 11.2. For more information, refer to the latest revision of Modine Bulletin 75-530.

Table 11.2 - High Altitude Kit Selection Table

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Item Code by Elevation Above Sea Level (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-2500</td>
<td>2501-4500</td>
</tr>
<tr>
<td>75</td>
<td>67248</td>
</tr>
<tr>
<td>100</td>
<td>67248</td>
</tr>
<tr>
<td>125</td>
<td>67248</td>
</tr>
<tr>
<td>150</td>
<td>77787</td>
</tr>
<tr>
<td>175</td>
<td>77786</td>
</tr>
<tr>
<td>200</td>
<td>67248</td>
</tr>
<tr>
<td>225</td>
<td>67248</td>
</tr>
<tr>
<td>250</td>
<td>67248</td>
</tr>
<tr>
<td>300</td>
<td>67248</td>
</tr>
<tr>
<td>350</td>
<td>67248</td>
</tr>
<tr>
<td>400</td>
<td>77786</td>
</tr>
</tbody>
</table>

① Applies to both installations in the U.S. and Canada.
② Applies to both natural and propane gas.
③ All kits include a High Altitude Conversion Label and Installation Instructions. Additionally, all kits except 67248 include a Pressure Switch to replace the standard switch.

If a unit is to be installed at higher elevations AND converted from natural gas to propane gas operation, a propane conversion kit must be used in conjunction with the manifold pressure adjustment and high altitude kit listed above. For the Selection and Installation Instructions for propane conversion kits, please see the latest revision of Modine Bulletin 75-511.
1. Installation of wiring must conform with local building codes, or in the absence of local codes, with the National Electric Code ANSI/NFPA 70 - Latest Edition. Unit must be electrically grounded in conformance to this code. In Canada, wiring must comply with CSA C22.1, Part 1, Electrical Code.

2. All duct furnaces are provided with a wiring diagram located on the inside door of the electrical junction box. Refer to this wiring diagram for all wiring connections. For factory installed options and field installed accessory wiring, refer to Set A and Set B on the provided wiring diagram.

3. The power supply to the duct furnace should be protected with a fused disconnect switch.

4. Refer to the unit serial plate (see Figure 26.1) for the amp draw of the duct furnace. Size the disconnect switch to cover the amp draw of the unit. For 460V and 575V units (Digit 14=F or G) a step down transformer is required. Units with Digit 15=1 require a 250VA transformer, units with Digit 15=2 require a 500VA transformer, and units with Digit 15=3 or 4 require a 1000VA transformer.

5. Refer to the unit dimensional drawing on page 18 for the electrical knockout locations.

Electrical Connections

WARNING

1. Disconnect power supply before making wiring connections to prevent electrical shock and equipment damage.

2. All appliances must be wired strictly in accordance with wiring diagram furnished with the appliance. Any wiring different from the wiring diagram could result in a hazard to persons and property.

3. Any original factory wiring that requires replacement must be replaced with wiring material having a temperature rating of at least 105°C.

4. Ensure that the supply voltage to the appliance, as indicated on the serial plate, is not 5% greater than rated voltage.

CAUTION

Ensure that the supply voltage to the appliance, as indicated on the serial plate, is not 5% less than rated voltage.

START-UP PROCEDURE

1. Turn off power to the unit at the disconnect switch. Check that fuses or circuit breakers are in place and sized correctly. Turn all hand gas valves to the “OFF” position.

2. Check that the supply voltage matches the unit supply voltage listed on the serial plate. Verify that all wiring is secure and properly protected. Trace circuits to insure that the unit has been wired according to the wiring diagram.

3. Check that all electrical and gas connections to the unit are sealed to prevent air leakage.

4. Check to insure that the venting system is installed and free from obstructions.

5. Check to see that there are no obstructions to the intake and discharge of the duct furnace.

6. Perform a visual inspection of the unit to make sure no damage has occurred during installation.

7. Turn on power to the unit at the disconnect switch. Check to insure that the voltage between terminals 1 and 2 is 24V.

8. Check the thermostat, ignition control, gas valve, power exhauster motor, and supply fan blower motor for electrical operation. If theses do not function, recheck the wiring diagram. Check to insure that none of the Gas Control Options & Accessories (see page 16) have tripped.

9. Recheck the gas supply pressure at the field installed manual-shut-off valve. The inlet pressure should be 6"-7" W.C. on natural gas or 11"-14" W.C. on propane. If inlet pressure is too high, install an additional pressure regulator upstream of the combination gas control.

10. Open the field installed manual gas shut-off valve.

11. Open the manual main gas valve on the combination gas control. Call for heat with the thermostat and allow the pilot to light. On a call for heat the power exhauster relay will energize the power exhauster motor. Once the power exhauster motor reaches full speed, the differential pressure switch will close before the pilot can light. If the pilot does not light, purge the pilot line. If air purging is required, disconnect the pilot line at outlet of pilot valve. In no case should line be purged into heat exchanger. Check the pilot flame length (See Pilot Burner Adjustment).

12. Once the pilot has been established, check to make sure that the main gas valve opens. Check the manifold gas pressure (See Main Burner Adjustment) and flame length (See Air Shutter Adjustment) while the circulating air blower is operating.

13. Check to insure that gas controls sequence properly (See Control Operating Sequence). Verify if the unit has any additional control devices and set according to the instructions in the Gas Controls Options.

14. Once proper operation of the duct furnace has been verified, remove any jumper wires that were required for testing.

15. Close the electrical compartment door.

16. Replace all exterior panels.
START-UP PROCEDURE

Pilot Burner Adjustment
The pilot burner is orificed to burn properly with an inlet pressure of 6-7” W.C. on natural gas and 11-14” W.C. on propane gas, but final adjustment must be made after installation. If the pilot flame is too long or large, it is possible that it may cause soot and/or impinge on the heat exchanger causing failure. If the pilot flame is shorter than shown, it may cause poor ignition and result in the controls not opening the combination gas control. A short flame can be caused by a dirty pilot orifice. Pilot flame condition should be observed periodically to assure trouble-free operation.

To Adjust the Pilot Flame
1. Create a call for heat from the thermostat.
2. Remove the cap from the pilot adjustment screw. For location, see the combination gas control literature supplied with unit.
3. Adjust the pilot length by turning the screw in or out to achieve a soft steady flame 3/4” to 1” long and encompassing 3/8”-1/2” of the tip of the thermocouple or flame sensing rod (See Figure 13.1).
4. Replace the cap from the pilot adjustment screw.

Main Burner Adjustment
The gas pressure regulator (integral to the combination gas control) is adjusted at the factory for average gas conditions. It is important that gas be supplied to the duct furnace in accordance with the input rating on the serial plate. Actual input should be checked and necessary adjustments made after the duct furnace is installed. Over-firing, a result of too high an input, reduces the life of the appliance and increases maintenance. Under no circumstances should the input exceed that shown on the serial plate.

Measuring the manifold pressure is done at the tee in the manifold (See Figure 13.2).

To Adjust the Manifold Pressure
1. Move the field installed manual shut-off valve to the “OFF” position.
2. Remove the 1/8” pipe plug in the pipe tee and attach a water manometer of “U” tube type which is at least 12” high.
3. Move the field installed manual gas shut-off valve to the “ON” position.
4. Create a high fire call for heat from the thermostat.
5. Determine the correct high fire manifold pressure. For natural gas 3.5” W.C., for propane gas 10” W.C. Adjust the main gas pressure regulator spring to achieve the proper manifold pressure (for location, see the combination gas control literature supplied with unit).
6. If the unit has Electronic Modulation gas controls (determine from the Model Identification Digit 12), the low fire gas pressure needs to be adjusted. Using Figure 13.3 for item number locations, this is accomplished as follows:
 a. Disconnect power.
 b. Remove all wires from duct furnace terminal “43” and remove cover plate (2).
 c. Turn on power at the disconnect switch.
 d. Remove the maximum adjustment screw (4), spring (5), and plunger (8). A small magnet is useful for this purpose.
 e. Using minimum adjusting screw (9), adjust low fire manifold pressure to 0.56” W.C. for natural gas and 1.6” W.C. for propane gas.
 f. Replace plunger and spring retainer, spring, and maximum adjusting screw in proper order.
 g. Using maximum adjustment screw (4), adjust high fire manifold pressure to 3.5” W.C. for natural gas and 10” W.C. for propane gas.
 h. Disconnect power.
 i. Replace cover plate (2) and re-install all wires from duct furnace terminal “43”.
7. After adjustment, move the field installed manual shut-off valve to the “OFF” position and replace the 1/8” pipe plug.
8. After the plug is in place, move the field installed manual shut-off valve to the “ON” position and recheck pipe plugs for gas leaks with soap solution.

Figure 13.1 - Correct Pilot Flame

Figure 13.2 - Manifold Pressure Test Point

Figure 13.3 - Maxitrol Modulating Valve Adjustments

1. TOP HOUSING
2. COVER PLATE
3. SEAL GASKET
4. MAXIMUM ADJUSTMENT SCREW
5. MAXIMUM ADJUSTMENT SPRING
6. SOLENOID
7. MINIMUM ADJUSTMENT SPRING
8. PLUNGER
9. MINIMUM ADJUSTMENT SCREW
10. MINIMUM ADJUSTMENT SCREW STOP
Air Shutter Adjustment
Proper operation provides a soft blue flame with a well-defined inner core. A lack of primary air will reveal soft yellow-tipped flames. Excess primary air produces short, well-defined flames with a tendency to lift off the burner ports. For both natural and propane gas, the air shutters can be adjusted to control the burner flame height. The air shutters can be accessed by reaching behind the manifold tee shown in Figure 23.1. The larger models may require the removal of the manifold (see Manifold Assembly Removal).

Natural Gas Flame Control
Control of burner flames on duct furnaces utilizing natural gas is achieved by resetting the primary air shutters (See Figure 23.1) to either increase or decrease primary combustion air. Prior to flame adjustment, operate duct furnace for about fifteen minutes. The main burner flame can be viewed after loosening and pushing aside the gas designation disc on the side of the burner box.

To increase primary air, loosen the air shutter set screws and move the air shutters closer to the manifold until the yellow-tipped flames disappear. (See Figure 23.1 for air shutter and heat exchanger support locations.) To decrease primary air, move the air shutters away from the manifolds until flames no longer lift from burner ports, but being careful not to cause yellow tipping. Retighten set screws after adjustment.

Propane Gas Flame Control
An optimum flame will show a slight yellow tip. Prior to flame adjustment, operate furnace for at least fifteen minutes. Loosen air shutter set screws and move the air shutters away from the manifold to reduce the primary air until the yellow flame tips appear. Then increase the primary air until yellow tips diminish and a clean blue flame with a well defined inner cone appears.

IMPORTANT
To prevent premature heat exchanger failure, with all control systems, a blower starting mechanism must be provided so that the blower is running or energized within 45 seconds of the gas control operation.

Control Operating Sequence
Duct furnaces are supplied with intermittent pilot systems with continuous retry, which both the main burner and pilot burner are turned off 100% when the thermostat is satisfied. On a call for heat, the system will attempt to light the pilot for 70 seconds. If the pilot is not sensed for any reason, the ignition control will wait for approximately six minutes with the combination gas control closed and no spark. After six minutes, the cycle will begin again. After three cycles, some ignition controllers lockout for approximately one hour before the cycle begins again. This will continue indefinitely until the pilot flame is sensed or power is interrupted to the system.

Note: Gas Control Options (see page 16) could change the listed sequence of operation based on their function.
The descriptions given are for the basic duct furnace.

Single Furnace Controls
Staged Control (Digit 12=1 or 2):
These units utilize a single- or two-stage combination gas valve, an ignition control, and a low voltage thermostat.

Electronic Modulating Control (Digit 12=4, 7, or 8):
These units utilize a single-stage combination gas valve, an electronic modulating gas valve, a modulating amplifier, an ignition control, and one of the following:
- Modulating room thermostat
- Modulating duct thermostat with remote temperature set point adjuster
- Building Management System (BMS) signal by others (an inverted signal where 0 VDC or 4 mA is high fire and 10 VDC or 20 mA is low fire).

The control operating sequence for all units is as follows:
1. The thermostat calls for heat. For BMS controlled units, the BMS closes a heat enable contact at the unit.
2. The power exhauster relay is energized starting the power exhauster motor. Once the motor has reached full speed, the differential pressure switch closes. The power exhauster pre-purge time delay relay then closes after 20 to 40 seconds and energizes the gas control circuit.
3. The pilot valve opens and the spark igniter sparks in an attempt to light the pilot. (If the unit was not provided with a time delay relay, the blower starts).
4. Once the pilot is lit, the flame sensor proves the pilot and stops the spark igniter from sparking.
5. The main gas valve is opened and the main burner is controlled as follows:
 a. Single-Stage Units: The main burner is lit to 100% full fire.
 b. Two-Stage Units: The main burner is lit to 50% fire. If the temperature at the thermostat continues to fall, the thermostat will call for high stage heat and the main burner is lit to 100% full fire.
 c. Modulating Thermostat (Room or Duct): The main gas valve is opened 100% and the burner firing rate is modulated between 40% and 100% full fire. A resistance
signal (8000 to 12000 ohms) in the thermostat is converted by the modulating amplifier to an inverted DC voltage (0VDC for high fire to 12 VDC for low fire). The output voltage is applied to the modulating gas valve to control the gas flow to the main burner. The modulating valve is modulated open or closed based on the voltage from the amplifier (less gas flow required = higher voltage, more gas flow required = lower voltage).

Note: When modulating duct sensing is utilized, a room override thermostat can be added. When the room override calls for heat, the burner modulates to full fire operation until the room override is satisfied. The unit then reverts back to duct sensing control. When equipped with both, either the duct sensor or the room override thermostat can call for heat.

d. **BMS Signal:** The main gas valve is opened 100% and the burner firing rate is modulated between 40% and 100% full fire. A BMS 0-10VDC or 4-20mA signal (inverted, such that 0 VDC or 4 mA is high fire and 10 VDC or 20 mA is low fire) is converted by the signal conditioner/modulating amplifier into an inverted DC voltage (0VDC for high fire to 12 VDC for low fire). The output voltage is applied to the modulating gas valve to control the gas flow to the main burner. The signal conditioner can accept a 0-10 VDC signal when all the dip switches are in the “OFF” position and 4-20 mA signal when all the dip switches are in the “ON” position. The modulating valve is modulated open or closed based on the voltage from the amplifier (less gas flow required = higher voltage, more gas flow required = lower voltage), which correlates to the control signal from the BMS.

Note: For further information regarding the operation of any of the electronic modulating system options above, consult the literature provided with the unit.

6. If the unit was provided with a time delay relay, the blower starts after 30 to 45 seconds.

7. The unit continues to operate until the thermostat is satisfied, Once satisfied:
 a. **Single-Stage Units:** Both the main and pilot valves close 100%.
 b. **Two-Stage Units:** Once the high stage of the thermostat is satisfied, the main valve closes to 50% fire. The unit continues to operate until the low stage thermostat is satisfied, at which time both the main and pilot valves close 100%.
 c. **Electronic Modulation Units:** The unit continues to operate in this manner until the thermostat is satisfied or the BMS heat enable contact opens. Power is then cut to both the main and pilot valves, closing them 100% and stopping gas flow to the main and pilot burners.

8. If the unit was not provided with a time delay relay, the blower stops immediately. If the unit was provided with a time delay relay, the blower stops after 30 to 45 seconds.

Multiple Furnace Controls

Staged Control (Digit 12=1 or 2):
For control of multiple staged units, each furnace would be individually controlled. Refer to the section for Single Furnace Controls, Staged Control (Digit 12=1 or 2).

Electronic Modulating Control (Digit 12=4):
Electronic modulation control of multiple furnaces with model nomenclature Digit 12=4 is not available. Refer to the section below for Electronic Modulating Control (Digit 12 = 5 and 6).

Electronic Modulating Control (Digit 12=7, or 8):
For control of multiple electronic modulation units for BMS control, each furnace would be individually controlled. Refer to the section for Single Furnace Controls, Electronic Modulation Control (Digit 12=7 or 8).

Electronic Modulating Control (Digit 12=5 and 6):
These units are the same as Electronic Modulating Gas Controls – Single Furnace (Digit 12=5) features a modulating amplifier capable of driving multiple modulating gas valves for systems with a Master and up to three Slave units (Digit 12=6). Slave units do not have a modulating amplifier. The units would be controlled by one of the following:
- Modulating room thermostat
- Modulating duct thermostat with remote temperature set point adjuster

The sequence of operation for Electronic Modulating Gas Controls - Master/Slave is the same as Electronic Modulating Gas Controls - Single Furnace. The modulating amplifier sends an equal voltage signal to all of the modulating gas valves so that they modulate at the same percentage, between 40% and 100% full fire.

Variable Air Movement Applications

When the air mover supplied by others can provide variable air movement (i.e. variable frequency drive units), the allowable minimum CFM of the duct furnace can be 66% of the minimum listed CFM in Table 18.1 if the unit is applied as follows:

1. The unit is provided with 2-stage or electronic modulating gas controls (See Model Identification).
2. The unit is provided with a discharge air controller.
3. The system does not include a room thermostat.

The discharge air thermostat will prevent the unit from firing above the allowable 100°F rise when the unit is at or above the minimum CFM by monitoring the discharge air and going to low fire. A room thermostat, because it is located remote from the unit, could cause the unit to over-fire.
START-UP PROCEDURE

Gas Control Options
The unit must be reviewed to determine if any of the listed gas control options were supplied.

1. Time Delay Relay
The Time Delay Relay is factory installed in the duct furnace electrical junction box. The standard duct furnace is provided for instantaneous fan operation. On a call for heat, the blower is energized at the same time as the gas controls. The optional time delay relay allows the gas controls to operate for approximately 30 seconds before the blower starts. This allows the heat exchanger a warm up period so that the initial delivered air coming out of the ductwork is not cool. The time delay relay also keeps the motor running for approximately 30 seconds after the call for heat has been satisfied to remove the residual heat from the heat exchanger.

2. Low Gas Pressure Switch
The low gas pressure switch is factory installed in the duct furnace above the gas train. The switch monitors the gas pressure upstream of all the gas controls and shuts off the electric supply to the ignition controller and combination gas valve if low gas pressure is experienced. This will shut off all gas flow to the burner. The switch has an automatic reset so that if the gas pressure is interrupted and then is returned, the switch will automatically allow the unit to operate when gas conditions are returned to the allowable range of the pressure switch. The pressure switch range is 2' to 14' W.C. and should be set to insure that the minimum inlet gas pressure is available (6' W.C. for natural gas, 11' W.C. for propane gas).

3. High Gas Pressure Switch
The high gas pressure switch is factory installed in the duct furnace above the gas train. The switch monitors the gas pressure downstream of all the gas controls and shuts off the electric supply to the ignition controller and combination gas valve if high gas pressure is experienced right before the manifold. This will shut off all gas flow to the burner. The switch has a manual reset so that if the gas pressure is too high, a service person must check the unit to make sure that none of the gas controls have been damaged by the high gas pressure and then reset the switch to allow the unit to operate when gas conditions are returned to the allowable range of the pressure switch. The pressure switch range is 2' to 16' W.C. and should be set to insure that the maximum manifold gas pressure is not exceeded (3.5' W.C. for natural gas, 10' W.C. for propane gas).

4. Supply Air Fire Stat
The fire stat is factory installed in the duct furnace electrical junction box with the sensor in the discharge air stream. In case of elevated temperatures in the supply air, the manual reset switch shuts down the entire unit. If the limit temperature is exceeded, a service person must inspect the unit for the cause of the high discharge temperature, take corrective action, and then reset the switch.

5. Timed Freeze Protection
The timed freeze protection system is factory installed in the duct furnace electrical junction box with the sensor (30°-75°F adjustable) factory installed in discharge air stream. On initial start-up, the timed delay in the system allows the unit to go through the normal ignition sequence. The timed delay is a manual reset switch and adjustable for 1-10 minutes. In the event that the unit fails to fire after this period, the discharge air sensor will sense the cold air and will shut down the entire unit.

Air Flow Proving Switch
The air flow proving switch is factory installed in the duct furnace electrical junction box. The air flow proving switch monitors the pressure differential between the duct furnace and the atmosphere. The purpose of the air flow proving switch is to cut power to the gas controls if a positive pressure is not measured by the switch. This could be caused by a lack of air movement through the heat exchanger.

NOTE: The air flow proving switch will prevent any heat exchanger warm-up (the unit should not be equipped with a time delay relay) because the gas controls can not be energized until air flow is proven.

Setting the Air Flow Proving Switch
The range of the air flow proving switch is adjustable between 0.17” to 5.0” W.C.
1. Set the thermostat so that there is a call for heat. This should start the blower and then the burner ignition sequence.
2. Turn the set screw of the pressure switch clockwise until it stops. This will set the pressure at 5.0” W.C.
3. Turn the screw counter-clockwise until the gas controls light and then one additional full turn (This is approximately 0.25” W.C.). This will allow for dirty filters or any other slight static pressure increases in the system.

Manual Reset High Limit
The manual reset high limit switch is factory installed in place of the standard automatic reset high limit switch located in the duct furnace electrical junction box. In case of a failure of the blower motor, blockage of the inlet air, etc., the manual reset switch prevents the unit from cycling on the high limit. If the limit temperature is exceeded, a service person must inspect the unit for the cause of the high discharge temperature, take corrective action, and then reset the switch.

Figure 16.1 - Location of Gas Control Options
Table 18.1 - Air Temperature Rise

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Input (Btu/HR)</th>
<th>Output (Btu/HR)</th>
<th>Air Temperature Rise Through Unit (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>75,000</td>
<td>60,750</td>
<td>20°F</td>
</tr>
<tr>
<td>100</td>
<td>100,000</td>
<td>81,000</td>
<td>20°F</td>
</tr>
<tr>
<td>125</td>
<td>125,000</td>
<td>101,250</td>
<td>20°F</td>
</tr>
<tr>
<td>150</td>
<td>150,000</td>
<td>121,500</td>
<td>20°F</td>
</tr>
<tr>
<td>175</td>
<td>175,000</td>
<td>141,750</td>
<td>20°F</td>
</tr>
<tr>
<td>200</td>
<td>200,000</td>
<td>162,000</td>
<td>20°F</td>
</tr>
<tr>
<td>225</td>
<td>225,000</td>
<td>182,250</td>
<td>20°F</td>
</tr>
<tr>
<td>250</td>
<td>250,000</td>
<td>202,500</td>
<td>20°F</td>
</tr>
<tr>
<td>300</td>
<td>300,000</td>
<td>243,000</td>
<td>20°F</td>
</tr>
<tr>
<td>350</td>
<td>350,000</td>
<td>283,500</td>
<td>20°F</td>
</tr>
<tr>
<td>400</td>
<td>400,000</td>
<td>324,000</td>
<td>20°F</td>
</tr>
</tbody>
</table>

Ratings are shown for elevations up to 2000 feet. For higher elevations, refer to section “Considerations for Elevation” on page 11.

Minimum Air Temperature Rise is 20°F and Maximum Air Temperature Rise is 100°F. The Maximum Discharge Air Temperature is 150°F.

High air temperature rise units include an air distribution baffle and restrictor change when compared to the low air temperature rise units. Field conversion of a high air temperature rise to a low air temperature rise unit (or the opposite) requires a factory supplied conversion kit.

The certified range of the High Temperature Rise Duct Furnaces is 20°-100°F but it is recommended that they be used from 60°-100°F to reduce the system pressure drop.

For Variable Air Movement Applications, see page 15.

The maximum CFM for the 350 and 400 sizes is 11,111CFM for high air temperature rise units (Digit 10=H) based on the maximum unit pressure drop.

All duct furnaces are designed for a maximum allowable static pressure of 3.0" W.C. on the heat exchanger.
Table 19.1 - Indoor Separated Combustion Duct Furnace Dimensions (All dimensions in inches)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Model Size</th>
<th>Model Size</th>
<th>Model Size</th>
<th>Model Size</th>
<th>Model Size</th>
<th>Model Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>100/125</td>
<td>150/175</td>
<td>200/225</td>
<td>250/300</td>
<td>350/400</td>
</tr>
<tr>
<td>A</td>
<td>23.74</td>
<td>26.24</td>
<td>30.50</td>
<td>32.60</td>
<td>35.60</td>
<td>47.14</td>
</tr>
<tr>
<td>B</td>
<td>13.98</td>
<td>16.48</td>
<td>20.74</td>
<td>22.85</td>
<td>25.85</td>
<td>37.39</td>
</tr>
<tr>
<td>C</td>
<td>12.58</td>
<td>15.08</td>
<td>19.34</td>
<td>21.45</td>
<td>24.48</td>
<td>36.00</td>
</tr>
<tr>
<td>D</td>
<td>33.04</td>
<td>33.04</td>
<td>33.04</td>
<td>37.04</td>
<td>37.04</td>
<td>37.04</td>
</tr>
<tr>
<td>E</td>
<td>28.61</td>
<td>28.61</td>
<td>28.61</td>
<td>32.61</td>
<td>32.61</td>
<td>32.61</td>
</tr>
<tr>
<td>F</td>
<td>23.08</td>
<td>23.08</td>
<td>23.08</td>
<td>26.43</td>
<td>26.43</td>
<td>26.43</td>
</tr>
<tr>
<td>G</td>
<td>18.19</td>
<td>18.19</td>
<td>18.19</td>
<td>19.21</td>
<td>19.21</td>
<td>19.21</td>
</tr>
<tr>
<td>J</td>
<td>18.90</td>
<td>18.90</td>
<td>18.90</td>
<td>22.90</td>
<td>22.90</td>
<td>22.90</td>
</tr>
<tr>
<td>K</td>
<td>3.86</td>
<td>3.86</td>
<td>3.86</td>
<td>5.86</td>
<td>5.86</td>
<td>5.86</td>
</tr>
<tr>
<td>L</td>
<td>4.17</td>
<td>4.17</td>
<td>4.17</td>
<td>6.18</td>
<td>6.18</td>
<td>6.18</td>
</tr>
<tr>
<td>M</td>
<td>10.26</td>
<td>10.26</td>
<td>10.26</td>
<td>9.60</td>
<td>9.60</td>
<td>9.60</td>
</tr>
<tr>
<td>Gas Connection Pipe Size</td>
<td>1/2"</td>
<td>1/2"</td>
<td>1/2"</td>
<td>1/2"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>Approx. Unit Shipping</td>
<td>226#</td>
<td>250#</td>
<td>273#</td>
<td>325#</td>
<td>385#</td>
<td>454#</td>
</tr>
<tr>
<td>Weight Unit Net</td>
<td>151#</td>
<td>170#</td>
<td>188#</td>
<td>230#</td>
<td>275#</td>
<td>329#</td>
</tr>
</tbody>
</table>

© Nominal vent pipe size is 4" (Models 75-175) and 6" (Models 200-400). Exhaust pipe installed over collar. Combustion air pipe installed inside collar.
THIS PAGE INTENTIONALLY LEFT BLANK
MAINTENANCE

WARNING

1. Installing, starting up and servicing heating, ventilation and air conditioning equipment poses significant hazards and requires specialized knowledge of Modine products and training in performing those services. Failure to have any service properly performed by, or making any modification to Modine equipment without the use of, qualified service personnel could result in serious injury to person and property, including death. Therefore, only qualified service personnel should work on any Modine products.
2. When servicing or repairing this equipment, use only factory-approved service replacement parts. A complete replacement parts list may be obtained by contacting Modine Manufacturing Company. Refer to the rating plate on the appliance for complete appliance model number, serial number, and company address. Any substitution of parts or controls not approved by the factory will be at the owner’s risk.

CAUTION

Do not attempt to reuse any mechanical or electrical controller which has been wet. Replace defective controller.

IMPORTANT

To check most of the Possible Remedies in the troubleshooting guide listed in Table 24.1, refer to the applicable sections of the manual.

All heating equipment should be serviced before each heating season to assure proper operations. The following items may be required to have more frequent service schedule based on the environment in which the unit is installed, and the frequency of the equipment operation.

Before any service, BE SURE TO TURN OFF GAS AT THE MANUAL SHUT-OFF VALVE AHEAD OF THE COMBINATION GAS CONTROL AND TURN OFF ALL ELECTRIC POWER TO THE HEATER AND AIR MOVING SYSTEM.

Blower Assembly

The blower assembly includes the bearings, drive sheaves and belts.

Blower bearings should be checked and lubricated based on the blower manufacturer’s recommendations. Bearings should also be checked for any unusual wear and replaced if needed. Drive sheaves should be checked at the same time the bearings are inspected. Check to make sure the sheaves are in alignment and are securely fastened to the blower and motor shafts. Belt tension should be rechecked shortly after the unit has been installed to check for belt stretching. After the initial start-up, monthly checks are recommended.

Filters

If the unit is supplied with a dirty filter switch and light, clean or replace the filters any time the dirty filter light comes on. Units which do not have a dirty filter warning light should have the filters checked monthly. Clean or replace if necessary. In dirty atmospheres, filter maintenance may be required more often.

Duct Furnace

When providing annual maintenance for the duct furnace, keep the unit free from dust, dirt, grease and foreign matter. Pay particular attention to:

1. The combustion air and exhaust vent piping.
2. The burner ports and pilot burner orifices (avoid the use of hard, sharp instruments capable of damaging surfaces for cleaning these ports). To check the burner port and pilot burner orifice, see Burner and Pilot Assembly Removal.
3. The air shutters and main burner orifices (avoid the use of hard, sharp instruments capable of damaging surfaces for cleaning these orifices). To check the air shutters and main burner orifices, see for Manifold Assembly Removal.

The heat exchanger should be checked annually for cracks and discoloration of the tubes. If a crack is detected, the heat exchanger should be replaced before the unit is put back into service. If the tubes are dark gray, airflow across the heat exchanger should be checked to insure that a blockage has not occurred or the blower is operating properly.

Electrical Wiring

The electrical wiring should be checked annually for loose connections or deteriorated insulation.

Gas Piping & Controls

The gas valves and piping should be checked annually for general cleanliness and tightness.

The gas controls should be checked to insure that the unit is operating properly.

Manifold Assembly Removal

To remove the manifold (refer to Figure 23.1)

1. Shut off gas and electric supply.
2. Remove the burner side access panel.
3. Disconnect gas manifold at ground union joint.
4. Remove the two screws holding the manifold to the heat exchanger support.
5. Slide the manifold through the manifold bracket.
6. Clean the orifices and adjust the air shutters as necessary.
7. Follow steps 3-6 in reverse order to install the manifold assembly.
8. Turn on the electric and gas supply.
9. Check the ground union joint for leaks with a soap solution. Tighten if necessary.
10. Install the burner side access panel.
Burner and Pilot Assembly Removal

To remove the burner (refer to Figure 23.2)

1. Shut off gas and electric supply.
2. Remove the burner side access panel.
3. Disconnect the pilot supply line from the gas valve.
4. Disconnect the ignition cable from the ignition controller (located in the electrical junction box). Feed the cable through the bushing in the bottom of the electrical junction box.
5. Remove the screws holding the burner side access panel. Attached to the panel are the burner retaining pins that align the burner.
6. Slide the burner assembly out. The pilot is attached to the burner assembly.
7. Examine the burner and pilot assembly for cleanliness and/or obstructions as necessary (see Duct Furnace for cleaning instructions).
8. Replace the burner assembly in reverse order. In replacing the burner, be certain that the rear burner slots are located properly on the burner retaining pins. Do not force the burner side access panel, it will not fit if the burner is not properly aligned.
9. Reconnect the ignition cable and pilot gas supply line.
10. Install the burner side access panel.
11. Turn on the electric and gas supply.
SERVICE & TROUBLESHOOTING

Table 24.1 - Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible Cause</th>
<th>Possible Remedy</th>
</tr>
</thead>
</table>
| Power Exhauster Motor will not start | 1. Power supply is off.
2. No 24V power to thermostat.
3. Thermostat malfunction.
4. Defective power exhauster relay.
5. Defective power exhauster motor. | 1. Turn on main power.
2. Check control transformer.
3. Check/replace thermostat.
4. Replace power exhauster relay.
5. Replace power exhauster motor. |
| Pilot does not light | 1. Main gas is off.
2. Power supply is off.
3. Air in gas line.
4. Dirt in pilot orifice.
5. Gas pressure out of proper range.
6. Pilot valve does not open.
 a. Defective ignition controller.
 b. Defective gas valve.
7. No Spark at ignitor.
 a. Loose wire connections.
 b. Pilot sensor is grounded.
 c. Defective ignition controller.
8. Safety device has cut power. | 1. Open manual gas valve.
2. Turn on main power.
3. Purge gas line.
4. Check for plugged pilot orifice and clean with compressed air if necessary.
5. Adjust to a maximum of 14" W.C.
 Minimum for Natural Gas - 6" W.C.
 Minimum for Propane Gas - 11" W.C.
6. Check wiring for 24 volts to valve.
 a. Replace ignition controller.
 b. Replace gas valve.
7. a. Check all ignition controller wiring.
 b. Replace sensor if cracked or worn
 c. Replace ignition controller.
8. Check all safety devices (High limit, air flow proving switch, differential pressure switch, gas pressure switches, etc.)
 Determine and correct problem. Reset if necessary. |
| Main burners do not light (Pilot is lit) | 1. Defective valve.
2. Loose wiring.
3. Defective pilot sensor
4. Defective ignition controller.
5. Improper thermostat wiring. | 1. Replace valve.
2. Check wiring to gas valve.
3. Replace pilot sensor.
4. Replace ignition controller.
5. Verify wiring compared to wiring diagram. |
| Lifting Flames (See Figure 25.1) | 1. Too much primary air.
2. Main pressure set too high.
3. Orifice too large. | 1. Reduce primary air.
2. Adjust to a maximum of 14" W.C.
3. Check orifice size with those listed on the serial plate. |
| Yellow Tipping | 1. Insufficient primary air.
2. Dirty orifice.
3. Misaligned orifice. | 1. Increase primary air.
2. Check orifices and clean with compressed air if necessary.
3. Check manifold, replace if necessary. |
| Flashback | 1. Too much primary air.
2. Main pressure set too high.
3. Orifice too large | 1. Reduce primary air.
2. Adjust to a maximum of 14" W.C.
3. Check orifice size with those listed on the serial plate. |
| Floating Flames (See Figure 25.2) | 1. Insufficient primary air.
2. Main pressure set too high.
3. Orifice too large.
4. Blocked vent. | 1. Increase primary air.
2. Adjust to a maximum of 14" W.C.
3. Check orifice size with those listed on the serial plate.
4. Clean/correct venting system. |
| Flame Rollout (See Figure 25.3) | 1. Main pressure set too high.
2. Orifice too large.
3. Blocked vent. | 1. Adjust to a maximum of 14" W.C.
2. Check orifice size with those listed on the serial plate.
3. Clean/correct venting system. |
SERVICE & TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible Cause</th>
<th>Possible Remedy</th>
</tr>
</thead>
</table>
| **Not Enough Heat** | 1. Unit cycling on high limit. ☀
 a. Obstructions/leaks in duct system.
 b. Main pressure set too high.
 c. Blower motor not energized.
 d. Loose belt
 e. Blower speed too low.
 f. Blocked/damaged venting system.
 g. Air distribution baffle removed (high temperature rise units only).
 h. Defective high limit switch.
 2. Main pressure set too low.
 3. Too much outside air.
 4. Thermostat malfunction.
 5. Gas controls wired incorrectly.
 6. Unit undersized. | 1. a. Clean/correct duct system.
 b. Adjust to a maximum of 14” W.C.
 c. Check/correct to insure blower motor operates within 45 seconds of when gas controls are energized.
 d. Adjust belt tension.
 e. Check/correct blower drive settings for proper rpm.
 f. Check/correct venting system.
 g. Replace air distribution baffle.
 h. Replace high limit switch.
 2. Adjust main gas pressure.
 Minimum for Natural Gas — 6” W.C.
 Minimum for Propane Gas — 11” W.C.
 3. Adjust outside air damper to decrease outside air percentage (if possible).
 4. Check/replace thermostat.
 5. Check unit wiring against the wiring diagram.
 6. Check design conditions. If unit is undersized, an additional unit(s) or other heat source must be added. |
| **Too Much Heat** | 1. Thermostat malfunction.
 2. Gas controls do not shut-off.
 a. Gas controls wired incorrectly.
 b. Short circuit.
 3. Main gas pressure set too high.
 2. a. Check unit wiring against the wiring diagram.
 b. Check for loose or worn wires.
 3. Adjust to a maximum of 14” W.C.
 4. Replace gas valve. |

Automatic Reset High Limit

The duct furnace comes standard with an automatic reset high limit switch that will shut-off the gas when the discharge air temperature becomes excessive. See Figure 16.1, indicator ☀ for the location of either the standard automatic or optional manual reset high limit switch. The switch should operate only when something is seriously wrong with the unit operation. Anytime the switch operates, correct the difficulty immediately or serious damage may result. If the switch cuts off the gas supply during normal operation, refer to the "Not Enough Heat" section of Service & Troubleshooting.

<table>
<thead>
<tr>
<th>Figure 25.1 - Lifting Flame Condition</th>
</tr>
</thead>
</table>

| Figure 25.2 Floating Flame Condition | Figure 25.3 Flame Rollout Appearance |
REPLACEMENT PARTS ORDERING

Ordering

When servicing, repairing or replacing parts on these units, locate the serial plate of the unit and always give the complete Model Number and Serial Number from the serial plate. The serial plate is located on the door of the electrical control box. The factory part number for some common replacement parts are listed on the sample serial plate (See Figure 26.1). For a complete description of the model number, see Model Identification.

Figure 26.1

For parts ordering, contact the parts wholesaler or the manufacturer’s representative serving your area. When inquiring about parts, always provide model number, serial number, description, and part number. When ordering parts, provide part number listed. For service, contact your local qualified installtion and service contractor or appropriate utility company.
MODEL IDENTIFICATION

Indoor Separated Combustion Duct Furnace Model Nomenclature

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>UC</td>
<td>V</td>
<td>MBH</td>
<td>HE</td>
<td>DS</td>
<td>AS</td>
<td>ATR</td>
<td>GT</td>
<td>GV</td>
<td>SS</td>
<td>SV</td>
<td>TR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Product Type (PT)**
 - D - Duct Furnace - Indoor

2. **Unit Configuration (UC)**
 - F - Furnace

3. **Venting (V)**
 - S - Separated Combustion

4, 5, 6. **Furnace Input Rating (MBH)**
 - 75 - 75,000 Btu/Hr Input
 - 100 - 100,000 Btu/Hr Input
 - 125 - 125,000 Btu/Hr Input
 - 150 - 150,000 Btu/Hr Input
 - 175 - 175,000 Btu/Hr Input
 - 200 - 200,000 Btu/Hr Input
 - 225 - 225,000 Btu/Hr Input
 - 250 - 250,000 Btu/Hr Input
 - 300 - 300,000 Btu/Hr Input
 - 350 - 350,000 Btu/Hr Input
 - 400 - 400,000 Btu/Hr Input

7. **Heat Exchanger/Burner/Drip Pan Material (HE)**
 - A - Aluminized Steel
 - S - 409 Stainless Steel Heat Exchanger/Burner
 - T - 409 Stainless Steel Heat Exchanger/Burner/Drip Pan

8. **Development Sequence (DS)**
 - F - Single Stage
 - M - 2-stage or Modulating

9. **Access Side (AS)**
 - R - Right Hand
 - L - Left hand

10. **Air Temperature Rise (ATR)**
 - H - High 20°-100°F
 - L - Low 20°-60°F

11. **Gas Type (GT)**
 - N - Natural with ignition controller
 - P - Propane with ignition controller

12. **Gas Valve (GV)**
 - 1 - Single Stage
 - 2 - Two Stage
 - 4 - Electronic Modulation
 - 5 - Electronic Modulation Master
 - 6 - Electronic Modulation Slave
 - 7 - Electronic Modulation 0-10 Vdc External Input
 - 8 - Electronic Modulation 4-20 mA External Input

13. **Additional Safety Switches (SS)**
 - 0 - No Additional Switches
 - 1 - Low Gas Pressure Switch
 - 2 - High Gas Pressure Switch
 - 3 - High & Low Gas Pressure Switch

14. **Supply Voltage (SV)**
 - A - 115/60/1
 - B - 208/60/1
 - C - 230/60/1
 - D - 208/60/3
 - E - 230/60/3
 - F - 460/60/3
 - G - 575/60/3

15. **Transformer (TR)**
 - 0 - None
 - 1 - 40 VA
 - 2 - 75 VA
 - 3 - 150 VA
 - 4 - 250 VA

Figure 27.1 - Serial Number Designations

```
SERIAL NUMBER PREFIX
<blank> if standard
"S" if Special Product Order

SERIES IDENTITY NUMBER
CONTROL SUPPLIER
01-Robertshaw 09-White Rodgers
05-Honeywell 17-United Technologies
08-Fenwal

GAS VALVE SUPPLIER
01-Robertshaw 09-White Rodgers
05-Honeywell

SPO NUMBER
<blank> if standard
##### if Special Product Order

SEQUENTIAL NUMBER
Varies - 0000 TO 9999
Each unit in a week has a unique number

YEAR PRODUCED

WEEK PRODUCED
```
COMMERCIAL WARRANTY

Seller warrants its products to be free from defects in material and workmanship, EXCLUSIVE, HOWEVER, of failures attributable to the use of materials subjected under emergency conditions for materials normally employed. This warranty covers replacement of any parts furnished from the factory of Seller, but does not cover labor of any kind and materials not furnished by Seller, or any charges for any such labor or materials, whether such labor, materials or charges thereon are due to replacement of parts, adjustments, repairs, or any other work done. This warranty does not apply to any equipment which shall have been repaired or altered outside the factory of Seller in any way so as, in the judgment of Seller, to affect its stability, nor which has been subjected to misuse, negligence, or operating conditions in excess of those for which such equipment was designed. This warranty does not cover the effects of physical or chemical properties of water or steam or other liquids or gases used in the equipment.

BUYER AGREES THAT SELLER’S WARRANTY OF ITS PRODUCTS TO BE FREE FROM DEFECT IN MATERIAL AND WORKMANSHIP, AS LIMITED HEREIN, SHALL BE IN LIEU OF AND EXCLUSIVE OF ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, WHETHER ARISING FROM LAW, COURSE OF DEALING, USAGE OF TRADE, OR OTHERWISE, THERE ARE NO OTHER WARRANTIES, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE, WHICH EXTEND BEYOND THE PRODUCT DESCRIPTION CONFIRMED BY BUYER AND SELLER AS OF THE DATE OF FINAL AGREEMENT.

This warranty is void if the input to the product exceeds the rated input as indicated on the product serial plate by more than 5% on gas-fired and oil-fired units, or if the product in the judgment of SELLER has been installed in a corrosive atmosphere, or subjected to corrosive fluids or gases, has been subjected to misuse, negligence, accident, excessive thermal shock, excessive humidity, physical damage, impact, abrasion, unauthorized alterations, or operation contrary to SELLER’S printed instructions, or if the serial number has been altered, defaced or removed.

BUYER AGREES THAT IN NO EVENT WILL SELLER BE LIABLE FOR COSTS OF PROCESSING, LOST PROFITS, INJURY TO GOODWILL, OR ANY OTHER CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY KIND RESULTING FROM THE ORDER OR USE OF ITS PRODUCT, WHETHER ARISING FROM BREACH OF WARRANTY, NONCONFORMITY TO ORDERED SPECIFICATIONS, DELAY IN DELIVERY, OR ANY LOSS SUSTAINED BY THE BUYER.

BUYER’S REMEDY FOR BREACH OF WARRANTY, EXCLUSIVE OF ALL OTHER REMEDIES PROVIDED BY LAW, IS LIMITED TO REPAIR OR REPLACEMENT AT THE FACTORY OF SELLER, ANY COMPONENT WHICH SHALL, WITHIN THE APPLICABLE WARRANTY PERIOD DEFINED HEREIN AND UPON PRIOR WRITTEN APPROVAL, BE RETURNED TO SELLER WITH TRANSPORTATION CHARGES PREPAID AND WHICH THE EXAMINATION OF SELLER SHALL DISCLOSE TO HAVE BEEN DEFECTIVE; EXCEPT THAT WHEN THE PRODUCT IS TO BE USED BY BUYER AS A COMPONENT PART OF EQUIPMENT MANUFACTURED BY BUYER, BUYER’S REMEDY FOR BREACH, AS LIMITED HEREIN, SHALL BE LIMITED TO ONE YEAR FROM DATE OF SHIPMENT FROM SELLER. FOR GAS-FIRED PRODUCTS INSTALLED IN HIGH HUMIDITY APPLICATIONS AND UTILIZING STAINLESS STEEL HEAT EXCHANGERS, BUYER’S REMEDY FOR BREACH, AS LIMITED HEREIN, SHALL BE LIMITED TO TEN YEARS FROM DATE OF SHIPMENT FROM SELLER.

These warranties are issued only to the original owner-user and cannot be transferred or assigned. No provision is made in these warranties for any labor allowance or field labor participation. Seller will not honor any expenses incurred in its behalf with regard to repairs to any of Seller’s products. No credit shall be issued for any defective part returned without proper written authorization (including, but not limited to, model number, serial number, date of failure, etc.) and freight prepaid.

OPTIONAL SUPPLEMENTAL WARRANTY

Provided a supplemental warranty has been purchased, Seller extends the warranty herein for an additional four (4) years on certain compressors. Provided a supplemental warranty has been purchased, Seller extends the warranty herein for an additional four (4) years or nine (9) years on certain heat exchangers.

EXCLUSION OF CONSUMABLES & CONDITIONS BEYOND SELLER’S CONTROL

This warranty shall not be applicable to any of the following items: refrigerant gas, belts, filters, fuses and other items consumed or worn out by normal wear and tear or conditions beyond Seller’s control, including (without limitation as to generality) polluted or contaminated or foreign matter contained in the air or water utilized for heat exchanger (condenser) cooling or if the failure of the part is caused by improper air or water supply, or improper or incorrect sizing of power supply.

<table>
<thead>
<tr>
<th>Component</th>
<th>“APPLICABLE WARRANTY PERIOD”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchangers, Gas-Fired Units except MPR Models</td>
<td>TEN YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN TEN YEARS FROM DATE OF RESALE BY BUYER OR ANY OTHER USER, WITHIN TEN YEARS FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN ONE HUNDRED TWENTY-SIX MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST</td>
</tr>
<tr>
<td>Low Intensity Infrared Units , Gas Heat option on MPR models</td>
<td>FIVE YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN FIVE YEARS FROM DATE OF RESALE BY BUYER OR ANY OTHER USER, WITHIN FIVE YEARS FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN SIXTY-SIX MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST</td>
</tr>
<tr>
<td>Condensing Units for Cassettes</td>
<td>TWO YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN TWO YEARS FROM DATE OF RESALE BY BUYER OR ANY OTHER USER, WITHIN FIFTY THREE MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST</td>
</tr>
<tr>
<td>Low Intensity Infrared Units</td>
<td></td>
</tr>
<tr>
<td>Compressors, MPR Models</td>
<td></td>
</tr>
<tr>
<td>Components excluding Heat Exchangers, Coils, Condensers, Burners, Sheet Metal</td>
<td></td>
</tr>
<tr>
<td>Indoor and Outdoor Duct Furnaces and System Units, Steam/Hot Water Units, Oil-Fired Units, Electric Units, Cassettes, Vertical Unit Ventilators, Geothermal Units</td>
<td></td>
</tr>
<tr>
<td>Vertical Unit Ventilators, Geothermal Units</td>
<td></td>
</tr>
<tr>
<td>High Intensity Infrared Units</td>
<td></td>
</tr>
<tr>
<td>All Products</td>
<td></td>
</tr>
</tbody>
</table>

As Modine Manufacturing Company has a continuous product improvement program, it reserves the right to change design and specifications without notice.